THERMOELASTIC SHALLOW TRANSFER SHELLS EQUALLY STRESSED OVER THE THICKNESS
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A condition is derived for membrane deformation of a shallow transfer shell
that is in a given force and temperature field and a specific example is
examined for its application.

It is known [1] that membrane deformation of shell structures is the most preferable of
their operating modes since stresses over the thickness of any section are distributed uni-
formly. Consequently, the design of such structures in which external force and temperature
fields cause no bending stresses is an urgent inverse problem of shell theory. Its solution
is given below for shallow transfer shells whose equations are representable in the form
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In this case the lines x; = const, X, = const can be identified with middle surface
lines of curvature, where [2]
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If the shell (1) is in the membrane state of stress under the action of an external sur-
face load (q;, q,, qp), then the forces T; = Txl, T, = sz and S are determined from the fol-

lowing system of differential equations {2, 3]
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The membrane condition imposes a constraint on the temperature field T(x,, X,) wherein
the temperature moments at all points of the middle surface equal zero. Hence, the deforma-
tions €; = €x,» €2 T €x,s Y12 of the middle surface for shells of the type under considera-

tion satisfy the following conditions [2, 3]
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in case the changes in curvature and torsion equal zero.

Moreover, they are related to the forces originating in the shell and the temperature
0 by Hooke's law
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where E = const, 1 = const, h = const, and a = const are Young's modulus, the Poisson ratio,
the shell thickness, and the temperature coefficient of linear expansion, respectively. By
virtue of (6) we have from the last equation in (5)
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This means that the shearing force in the shell is determined completely by its values at
X1 = 0 and x, = 0. By using (5) and (6) we convert (4) into the following form
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Integrating the first two equations in (8) we have
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Consequently, the third equation in (8) yields
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Formula (11) is fundamental in the solution of the problems formulated at the beginning
of the paper. By using it equations can be deduced to find such functions @ (x;) and ¥(x,)
for which a given surface load (q;, q,, q,) and boundary conditions T;(0, x,), T,(xy, 0),
S(0, x,), S(x;, 0) develop a flexure-free (i.e., membrane) deformation in a shell with the

middle surface (1).
Let us examine a particular case of this problem when

g1 == g3 =0, g = const, a = const, @ = const,
1] 0 (12)
T, (0, x5) = T} = const, T, (x;, 0) = T3 == const, S(0, x5) = S(x;, 0)=0.

In this case S(x;, %,) = 0, T;(x1, %,) = T;°%, T,o(x;, x,) = T,°. Consequently, the following
equation results from (11)
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Since A~ 1, B =& 1, then within the limits of this accuracy we replace (13) by the following
equation
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where A is a constant that is still undetermined.
Equations (15) are nonlinear differential equations for @ and ¥:
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Let us attach boundary conditions to (15)
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By using the substitutions

O (x)=u, VW (=v (17)

Egs. (16) can be reduced in order. Integrating the equations that occur here, we obtain the
following approximate formula for the desired mode of the membrane transfer surface:
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This formula has the same order of accuracy as the initial assumption (2) on the shallow-
ness of the shell.

NOTATTON

Ty, T,, S are generalized forces acting at normal sections of the shell; €,, €5, Y1,
are changes in linear elements of the middle surface and the angles between them; © is the
change in temperature averaged over the shell thickness; E, u are Young's modulus and the
Poisson ratio of the shell; h is the thickness; o is the coefficient of temperature expan-
sion; A, B, R;, R, are coefficients of the first quadratic form, and the ratio of principal
curvature of the shell middle surface; q;, q,, g, are external surface load components in
the direction of the coordinate lines and the normal; T is the temperature field.
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